Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.521
Filtrar
1.
Anal Chim Acta ; 1273: 341528, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423662

RESUMO

Efficient DNA sample preparation from fungi with the rigid cell walls is still critical for successful polymerase chain reaction (PCR), one of the basic platforms in molecular diagnostics of fungi, especially in medical mycology. Common methods that involve different chaotropes to yield DNA samples have found a limited application for fungi. Here we describe a novel procedure for efficient production of permeable fungal cell envelopes with DNA inside as suitable templates for PCR. This procedure is facile, relies on boiling of fungal cells in aqueous solutions of selected chaotropic agents and additives and enables to remove RNA and proteins from PCR template samples. The use of chaotropic solutions containing 7 M urea, 1% sodium dodecyl sulfate (SDS), up to100 mM ammonia and/or 25 mM sodium citrate was the best option to yield highly purified DNA-containing cell envelopes from all fungal strains under study, including clinical Candida and Cryptococcusisolates. After treatment with the selected chaotropic mixtures, the fungal cell walls had undergone loosening and were no longer a barrier to release DNA in PCR as evident from electron microscopy examinations and successful target gene amplifications. Overall, the developed simple, fast, and low-cost approach to produce PCR-suitable templates in the form of DNA encased by permeable cell walls can find application in molecular diagnostics.


Assuntos
Parede Celular , Reação em Cadeia da Polimerase , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , Parede Celular/química
2.
BMC Microbiol ; 23(1): 68, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918804

RESUMO

At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.


Assuntos
DNA Fúngico , Fungos , Sedimentos Geológicos , Micobioma , Esporos Fúngicos , Ascomicetos/genética , Ascomicetos/fisiologia , Basidiomycota/genética , Basidiomycota/fisiologia , Chile , Fungos/genética , Fungos/fisiologia , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Microbiota/fisiologia , Micélio/genética , Micélio/isolamento & purificação , Micélio/fisiologia , Micobioma/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/genética , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/fisiologia , Áreas Alagadas , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , DNA Fúngico/fisiologia
3.
Sci Rep ; 12(1): 2826, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181709

RESUMO

Dry dipterocarp forests are among the most common habitat types in Thailand. Russulaceae are known as common ectomycorrhizal symbionts of Dipterocarpaceae trees in this type of habitat. The present study aims to identify collections of Russula subsection Amoeninae Buyck from dry dipterocarp forests in Thailand. A multi-locus phylogenetic analysis placed Thai Amoeninae collections in two novel lineages, and they are described here as R. bellissima sp. nov. and R. luteonana sp. nov. The closest identified relatives of both species were sequestrate species suggesting that they may belong to drought-adapted lineages. An analysis of publicly available ITS sequences in R. subsect. Amoeninae did not confirm evidence of any of the new species occurring in other Asian regions, indicating that dry dipterocarp forests might harbor a novel community of ectomycorrhizal fungi. Macromorphological characters are variable and are not totally reliable for distinguishing the new species from other previously described Asian Amoeninae species. Both new species are defined by a combination of differentiated micromorphological characteristics in spore ornamentation, hymenial cystidia and hyphal terminations in the pileipellis. The new Amoeninae species may correspond to some Russula species collected for consumption in Thailand, and the detailed description of the new species can be used for better identification of edible species and food safety in the region.


Assuntos
Basidiomycota/genética , DNA Fúngico/isolamento & purificação , Dipterocarpaceae/genética , Filogenia , Basidiomycota/classificação , DNA Fúngico/genética , Dipterocarpaceae/classificação , Ecossistema , Florestas , Micorrizas/classificação , Micorrizas/genética , Tailândia , Clima Tropical
4.
Sci Rep ; 12(1): 1399, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082361

RESUMO

Pathogen detection and identification are key elements in outbreak control of human, animal, and plant diseases. Since many fungal plant pathogens cause similar symptoms, are difficult to distinguish morphologically, and grow slowly in culture, culture-independent, sequence-based diagnostic methods are desirable. Whole genome metagenomic sequencing has emerged as a promising technique because it can potentially detect any pathogen without culturing and without the need for pathogen-specific probes. However, efficient DNA extraction protocols, computational tools, and sequence databases are required. Here we applied metagenomic sequencing with the Oxford Nanopore Technologies MinION to the detection of the fungus Calonectria pseudonaviculata, the causal agent of boxwood (Buxus spp.) blight disease. Two DNA extraction protocols, several DNA purification kits, and various computational tools were tested. All DNA extraction methods and purification kits provided sufficient quantity and quality of DNA. Several bioinformatics tools for taxonomic identification were found suitable to assign sequencing reads to the pathogen with an extremely low false positive rate. Over 9% of total reads were identified as C. pseudonaviculata in a severely diseased sample and identification at strain-level resolution was approached as the number of sequencing reads was increased. We discuss how metagenomic sequencing could be implemented in routine plant disease diagnostics.


Assuntos
Buxus/microbiologia , Genoma Fúngico , Hypocreales/genética , Hypocreales/patogenicidade , Metagenoma , Metagenômica/métodos , Doenças das Plantas/microbiologia , Biologia Computacional/métodos , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodos
5.
Parasit Vectors ; 15(1): 26, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033159

RESUMO

BACKGROUND: Microsporidia is a large group of eukaryotic obligate intracellular spore-forming parasites, of which 17 species can cause microsporidiosis in humans. Most human-infecting microsporidians belong to the genera Enterocytozoon and Encephalitozoon. To date, only five microsporidian species, including Encephalitozoon-like, have been found in hard ticks (Ixodidae) using microscopic methods, but no sequence data are available for them. Furthermore, no widespread screening for microsporidian-infected ticks based on DNA analysis has been carried out to date. Thus, in this study, we applied a recently developed DNA metabarcoding method for efficient microsporidian DNA identification to assess the role of ticks as potential vectors of microsporidian species causing diseases in humans. METHODS: In total, 1070 (493 juvenile and 577 adult) unfed host-seeking Ixodes ricinus ticks collected at urban parks in the city of Poznan, Poland, and 94 engorged tick females fed on dogs and cats were screened for microsporidian DNA. Microsporidians were detected by PCR amplification and sequencing of the hypervariable V5 region of 18S rRNA gene (18S profiling) using the microsporidian-specific primer set. Tick species were identified morphologically and confirmed by amplification and sequencing of the shortened fragment of cytochrome c oxidase subunit I gene (mini-COI). RESULTS: All collected ticks were unambiguously assigned to I. ricinus. Potentially zoonotic Encephalitozoon intestinalis was identified in three fed ticks (3.2%) collected from three different dogs. In eight unfed host-seeking ticks (0.8%), including three males (1.1%), two females (0.7%) and three nymphs (0.7%), the new microsporidian sequence representing a species belonging to the genus Endoreticulatus was identified. CONCLUSIONS: The lack of zoonotic microsporidians in host-seeking ticks suggests that I. ricinus is not involved in transmission of human-infecting microsporidians. Moreover, a very low occurrence of the other microsporidian species in both fed and host-seeking ticks implies that mechanisms exist to defend ticks against infection with these parasites.


Assuntos
Vetores Aracnídeos/microbiologia , Ixodes/microbiologia , Microsporídios/fisiologia , Animais , Sequência de Bases , Doenças do Gato/parasitologia , Gatos , Código de Barras de DNA Taxonômico , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Ribossômico/química , Doenças do Cão/parasitologia , Cães , Complexo IV da Cadeia de Transporte de Elétrons/química , Feminino , Masculino , Microsporídios/classificação , Parques Recreativos , Filogenia , Polônia , Prevalência , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
6.
Toxins (Basel) ; 13(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34678974

RESUMO

Alternaria fungi dominate the grain microbiota in many regions of the world; therefore, the detection of species that are able to produce mycotoxins has received much attention. A total of 178 grain samples of wheat, barley and oat obtained from the Urals and West Siberia regions of Russia in 2017-2019 were included in the study. Grain contamination with Alternaria fungi belonging to sections Alternaria and Infectoriae was analysed using qPCR with specific primers. The occurrence of four mycotoxins produced by Alternaria, AOH, AME, TEN, and TeA, was defined by HPLC-MS/MS. Alternaria DNA was found in all analysed grain samples. The prevalence of DNA of Alternaria sect. Alternaria fungi (range 53 × 10-4-21,731 × 10-4 pg/ng) over the DNA of Alternaria sect. Infectoriae (range 11 × 10-4‒4237 × 10-4 pg/ng) in the grain samples was revealed. Sixty-two percent of grain samples were contaminated by at least two Alternaria mycotoxins. The combination of TEN and TeA was found most often. Eight percent of grain samples were contaminated by all four mycotoxins, and only 3% of samples were free from the analysed secondary toxic metabolites. The amounts varied in a range of 2-53 µg/kg for AOH, 3-56 µg/kg for AME, 3-131 µg/kg for TEN and 9-15,000 µg/kg for TeA. To our knowledge, a new global maximum level of natural contamination of wheat grain with TeA was detected. A positive correlation between the amount of DNA from Alternaria sect. Alternaria and TeA was observed. The significant effects of cereal species and geographic origin of samples on the amounts of DNA and mycotoxins of Alternaria spp. in grain were revealed. Barley was the most heavily contaminated with fungi belonging to both sections. The content of AOH in oat grain was, on average, higher than that found in wheat and barley. The content of TEN in the grain of barley was lower than that in wheat and similar to that in oat. The content of TeA did not depend on the cereal crop. The effect of weather conditions (summer temperature and rainfall) on the final fungal and mycotoxin contamination of grain was discussed. The frequent co-occurrence of different Alternaria fungi and their mycotoxins in grain indicates the need for further studies investigating this issue.


Assuntos
Alternaria/isolamento & purificação , Grão Comestível/microbiologia , Micotoxinas/análise , Alternaria/genética , Avena/microbiologia , DNA Fúngico/isolamento & purificação , Contaminação de Alimentos/análise , Hordeum/microbiologia , Federação Russa , Triticum/microbiologia , Tempo (Meteorologia)
7.
Toxins (Basel) ; 13(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34564673

RESUMO

Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016-2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.


Assuntos
Avena/química , Avena/microbiologia , Contaminação de Alimentos/análise , Fusarium/química , Fusarium/genética , Micotoxinas/análise , Doenças das Plantas/microbiologia , DNA Fúngico/isolamento & purificação , Grão Comestível/química , Grão Comestível/microbiologia , Manitoba , Filogenia , Especificidade da Espécie
8.
Crit Rev Eukaryot Gene Expr ; 31(3): 45-63, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34369714

RESUMO

The historic center of Quito, Ecuador, was one of the first World Cultural Heritage Sites declared by UNESCO in 1978. There are numerous religious buildings built during the Spanish colonial period reflecting the cultural heritage in this area. Between them, the cloisters of San Francisco, Santo Domingo, and Santa Clara should be highlighted. The specific problems of conservation of the outdoor canvas paintings are not well known at the moment. The objective of this paper is to achieve a conservation study of the canvas paintings exhibited in these three cloisters of the historic center of Quito in order to identify the microbial agents and the main bioclimatic parameters of deterioration. For this, a study of the state of conservation of five canvas paintings has been carried out, as well as a sampling and identification of the main microorganisms present on the obverse and reverse of the works, employing diverse techniques, traditional and biomolecular ones. An analysis of climatic conditions has also been achieved in the cloister of San Francisco. The results of the study indicate that the exhibition conditions in the cloisters are really problematic for the conservation of paintings. Important biodeteriorating agents have been isolated, including fungi and bacteria species belonging, among others, to the genera Bacillus, Penicillium, Alternaria, Mucor, and Aspergillus. We have also researched its relationship with the deterioration state of the artworks and the exhibition conditions in each case, proposing guidelines for the proper conservation of this important World Cultural Heritage.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Pinturas , Têxteis/microbiologia , Alternaria/genética , Alternaria/isolamento & purificação , Aspergillus/genética , Aspergillus/isolamento & purificação , Bacillus/genética , Bacillus/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Candida/genética , Candida/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Equador , Microbiologia Ambiental , Fungos/classificação , Fungos/genética , Humanos , Penicillium/genética , Penicillium/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Staphylococcus/genética , Staphylococcus/isolamento & purificação
9.
Sci Data ; 8(1): 221, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413318

RESUMO

Thermokarst activity at permafrost sites releases considerable amounts of ancient carbon to the atmosphere. A large part of this carbon is released via thermokarst ponds, and fungi could be an important organismal group enabling its recycling. However, our knowledge about aquatic fungi in thermokarstic systems is extremely limited. In this study, we collected samples from five permafrost sites distributed across circumpolar Arctic and representing different stages of permafrost integrity. Surface water samples were taken from the ponds and, additionally, for most of the ponds also the detritus and sediment samples were taken. All the samples were extracted for total DNA, which was then amplified for the fungal ITS2 region of the ribosomal genes. These amplicons were sequenced using PacBio technology. Water samples were also collected to analyze the chemical conditions in the ponds, including nutrient status and the quality and quantity of dissolved organic carbon. This dataset gives a unique overview of the impact of the thawing permafrost on fungal communities and their potential role on carbon recycling.


Assuntos
Fungos/classificação , Micobioma , Pergelissolo/microbiologia , Lagoas/microbiologia , Regiões Árticas , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , DNA Espaçador Ribossômico/genética , Congelamento , Fungos/genética , Fungos/isolamento & purificação , Lagoas/química
10.
PLoS One ; 16(6): e0253772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191835

RESUMO

Many fungi require specific growth conditions before they can be identified. Direct environmental DNA sequencing is advantageous, although for some taxa, specific primers need to be used for successful amplification of molecular markers. The internal transcribed spacer region is the preferred DNA barcode for fungi. However, inter- and intra-specific distances in ITS sequences highly vary among some fungal groups; consequently, it is not a solely reliable tool for species delineation. Ampelomyces, mycoparasites of the fungal phytopathogen order Erysiphales, can have ITS genetic differences up to 15%; this may lead to misidentification with other closely related unknown fungi. Indeed, Ampelomyces were initially misidentified as other pycnidial mycoparasites, but subsequent research showed that they differ in pycnidia morphology and culture characteristics. We investigated whether the ITS2 nucleotide content and secondary structure was different between Ampelomyces ITS2 sequences and those unrelated to this genus. To this end, we retrieved all ITS sequences referred to as Ampelomyces from the GenBank database. This analysis revealed that fungal ITS environmental DNA sequences are still being deposited in the database under the name Ampelomyces, but they do not belong to this genus. We also detected variations in the conserved hybridization model of the ITS2 proximal 5.8S and 28S stem from two Ampelomyces strains. Moreover, we suggested for the first time that pseudogenes form in the ITS region of this mycoparasite. A phylogenetic analysis based on ITS2 sequences-structures grouped the environmental sequences of putative Ampelomyces into a different clade from the Ampelomyces-containing clades. Indeed, when conducting ITS2 analysis, resolution of genetic distances between Ampelomyces and those putative Ampelomyces improved. Each clade represented a distinct consensus ITS2 S2, which suggested that different pre-ribosomal RNA (pre-rRNA) processes occur across different lineages. This study recommends the use of ITS2 S2s as an important tool to analyse environmental sequencing and unveiling the underlying evolutionary processes.


Assuntos
Ascomicetos/classificação , DNA Ambiental/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , DNA Ambiental/isolamento & purificação , DNA Fúngico/isolamento & purificação , DNA Espaçador Ribossômico/isolamento & purificação , Marcadores Genéticos , Filogenia , Análise de Sequência de DNA
11.
J Microbiol Methods ; 187: 106272, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166707

RESUMO

Although asterinaceous fungi have been studied for many years, all previous attempts to isolate, cultivate, and propagate these fungi in vitro have failed. This paper provides the first reports of in vitro isolation of representative strains of species belonging to five fungi from different genera belonging to Asterinales. To confirm if the sequences of DNA obtained from the mycelia are the same obtained in the direct extraction, a phylogenetic analysis of nuc LSU rDNA was performed. This paper reports for the first time the success of in vitro culturing of asterinaceous fungi using the ascospores ejection technique, opening perspectives of studies of genetics, physiology, among other aspects of the biology for this very understudied group of fungi.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Micologia/métodos , Ascomicetos/genética , Meios de Cultura , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Micélio/crescimento & desenvolvimento , Filogenia , Folhas de Planta/microbiologia , Análise de Sequência de DNA , Esporos Fúngicos
12.
Sci Rep ; 11(1): 12487, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127714

RESUMO

Using a validated yeast chemogenomic platform, we characterized the genome-wide effects of several pharmaceutical contaminants, including three N-nitrosamines (NDMA, NDEA and NMBA), two related compounds (DMF and 4NQO) and several of their metabolites. A collection of 4800 non-essential homozygous diploid yeast deletion strains were screened in parallel and the strain abundance was quantified by barcode sequencing. These data were used to rank deletion strains representing genes required for resistance to the compounds to delineate affected cellular pathways and to visualize the global cellular effects of these toxins in an easy-to-use searchable database. Our analysis of the N-nitrosamine screens uncovered genes (via their corresponding homozygous deletion mutants) involved in several evolutionarily conserved pathways, including: arginine biosynthesis, mitochondrial genome integrity, vacuolar protein sorting and DNA damage repair. To investigate why NDMA, NDEA and DMF caused fitness defects in strains lacking genes of the arginine pathway, we tested several N-nitrosamine metabolites (methylamine, ethylamine and formamide), and found they also affected arginine pathway mutants. Notably, each of these metabolites has the potential to produce ammonium ions during their biotransformation. We directly tested the role of ammonium ions in N-nitrosamine toxicity by treatment with ammonium sulfate and we found that ammonium sulfate also caused a growth defect in arginine pathway deletion strains. Formaldehyde, a metabolite produced from NDMA, methylamine and formamide, and which is known to cross-link free amines, perturbed deletion strains involved in chromatin remodeling and DNA repair pathways. Finally, co-administration of N-nitrosamines with ascorbic or ferulic acid did not relieve N-nitrosamine toxicity. In conclusion, we used parallel deletion mutant analysis to characterize the genes and pathways affected by exposure to N-nitrosamines and related compounds, and provide the data in an accessible, queryable database.


Assuntos
Contaminação de Medicamentos , Nitrosaminas/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Testes de Toxicidade Aguda , Arginina/biossíntese , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/isolamento & purificação , Aptidão Genética/efeitos dos fármacos , Genoma Fúngico/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
13.
J Med Microbiol ; 70(5)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34038342

RESUMO

Introduction. Invasive mucormycosis (IM) is a life-threatening infection caused by fungi belonging to the order Mucorales. Histopathology, culture and radiology are the mainstay of diagnosis but lack sensitivity, leading to a delay in timely diagnosis and intervention. Recently, PCR-based approaches have been shown to be a promising method in diagnosing IM.Hypothesis/Gap Statement. Molecular-based approaches may be a valuable adjunct to standard conventional methods for diagnosing IM, especially among culture negatives and patients on antifungal therapy.Aim. In the present study we aimed to evaluate the clinical utility of panfungal and Mucorales-specific PCR for diagnosing IM from various clinical specimens.Methodology. This was a prospective study in which 239 clinically suspected cases of IM attending our tertiary care hospital from August 2015 to March 2018 were enrolled. All the cases were defined as 'proven', 'probable' or 'possible' based on EORTC/MSGERC guidelines. In addition to conventional diagnostics (KOH-calcofluor stain and culture), panfungal and Mucorales-specific PCR assays were also performed. The amplified products were sequenced for species identification. In vitro antifungal susceptibility was performed on all the culture-positive isolates.Results. Among 239 clinically suspected cases of IM, only 140 cases were diagnosed by the demonstration of aseptate ribbon-like hyphae on direct microscopy. Culture was positive in 35.7 % (54/140) of direct microscopy-positive samples. Among the proven cases (n=11), the sensitivity for both Mucorales-specific nested PCR and panfungal PCR was 100 %, but specificity was 91.9 and 73.7% respectively. In probable cases (n=129), the sensitivity of both the PCRs was 98.5 % and specificity for panfungal PCR was 73.7 and 91.9 % for Mucorales-specific PCR.Conclusion. Pan fungal PCR in combination with Mucorales-specific PCR, followed by sequencing, may play a significant role in IM diagnosis especially among those negative for both direct microscopy and culture.


Assuntos
Infecções Fúngicas Invasivas/diagnóstico , Mucorales/isolamento & purificação , Mucormicose/diagnóstico , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , DNA Fúngico/isolamento & purificação , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estudos Prospectivos , Sensibilidade e Especificidade , Adulto Jovem
14.
Sci Rep ; 11(1): 9845, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972587

RESUMO

The basidiomycete fungus Lentinula novae-zelandiae is endemic to New Zealand and is a sister taxon to Lentinula edodes, the second most cultivated mushroom in the world. To explore the biology of this organism, a high-quality chromosome level reference genome of L. novae-zelandiae was produced. Macrosyntenic comparisons between the genome assembly of L. novae-zelandiae, L. edodes and a set of three genome assemblies of diverse species from the Agaricomycota reveal a high degree of macrosyntenic restructuring within L. edodes consistent with signal of domestication. These results show L. edodes has undergone significant genomic change during the course of its evolutionary history, likely a result of its cultivation and domestication over the last 1000 years.


Assuntos
Domesticação , Genoma Fúngico , Lentinula/genética , Cogumelos Shiitake/genética , Sintenia , DNA Fúngico/isolamento & purificação , Genômica , Anotação de Sequência Molecular , Análise de Sequência de DNA
15.
Int J Med Mushrooms ; 23(4): 93-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33822511

RESUMO

Ophiocordyceps sinensis appears as stroma emerging from underground sclerotium enclosed by the skeleton of Thitarodes moth larvae. However, the actual distribution of the fungus in soil still remains unclarified. In this study, 40 soil samples were used for detection of O. sinensis to confirm its distribution in native habitats using denaturing gradient gel electrophoresis, nested internal transcribed spacer (ITS) PCR, and 454 pyrosequencing methods. The soil samples included six types: Os, where both stromata and host moth larvae were found; NL, representing no signs of stromata, but where moth larvae were found; NOs, where neither stroma nor moth larvae were found; BS, with bare soil without the presence of stroma of O. sinensis or moth larvae; AF, from soil surrounding the stroma; and MP, soil particles firmly wrapping the sclerotium of O. sinensis. Of 40 samples tested, 36 showed positive detection of O. sinensis by at least one of the three detection methods, with positive detection in all six sample types at all five sites. The results showed that traces of O. sinensis can be detected in locations with no macroscopically visible evidence of the fungus or its host and at least 100 m away from such locations.


Assuntos
Cordyceps/fisiologia , Microbiologia do Solo , Animais , China , Cordyceps/química , Cordyceps/genética , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Larva/microbiologia , Mariposas/microbiologia , Reação em Cadeia da Polimerase , Solo/química , Solo/classificação , Água/análise
16.
PLoS One ; 16(4): e0248967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826639

RESUMO

BACKGROUND: The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the composition of the oral and pulmonary mycobiome in participants with COPD compared to controls in a large-scale single-centre bronchoscopy study (MicroCOPD). METHODS: Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD and 100 controls. Fungal DNA was extracted before sequencing of the internal transcribed spacer 1 (ITS1) region of the fungal ribosomal RNA gene cluster. Taxonomic barplots were generated, and we compared taxonomic composition, Shannon index, and beta diversity between study groups, and by use of inhaled steroids. RESULTS: The oral and pulmonary mycobiomes from controls and participants with COPD were dominated by Candida, and there were more Candida in oral samples compared to BAL for both study groups. Malassezia and Sarocladium were also frequently found in pulmonary samples. No consistent differences were found between study groups in terms of differential abundance/distribution. Alpha and beta diversity did not differ between study groups in pulmonary samples, but beta diversity varied with sample type. The mycobiomes did not seem to be affected by use of inhaled steroids. CONCLUSION: Oral and pulmonary samples differed in taxonomic composition and diversity, possibly indicating the existence of a pulmonary mycobiome.


Assuntos
Fungos , Pulmão/microbiologia , Boca/microbiologia , Micobioma/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/microbiologia , Idoso , Estudos de Casos e Controles , DNA Fúngico/isolamento & purificação , Feminino , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia
18.
Nat Commun ; 12(1): 2132, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837197

RESUMO

Oxidative plant cell-wall processing enzymes are of great importance in biology and biotechnology. Yet, our insight into the functional interplay amongst such oxidative enzymes remains limited. Here, a phylogenetic analysis of the auxiliary activity 7 family (AA7), currently harbouring oligosaccharide flavo-oxidases, reveals a striking abundance of AA7-genes in phytopathogenic fungi and Oomycetes. Expression of five fungal enzymes, including three from unexplored clades, expands the AA7-substrate range and unveils a cellooligosaccharide dehydrogenase activity, previously unknown within AA7. Sequence and structural analyses identify unique signatures distinguishing the strict dehydrogenase clade from canonical AA7 oxidases. The discovered dehydrogenase directly is able to transfer electrons to an AA9 lytic polysaccharide monooxygenase (LPMO) and fuel cellulose degradation by LPMOs without exogenous reductants. The expansion of redox-profiles and substrate range highlights the functional diversity within AA7 and sets the stage for harnessing AA7 dehydrogenases to fine-tune LPMO activity in biotechnological conversion of plant feedstocks.


Assuntos
Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oomicetos/enzimologia , Oxirredutases/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Cristalografia por Raios X , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Flavoproteínas Transferidoras de Elétrons/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/ultraestrutura , Microbiologia Industrial/métodos , Espectroscopia de Ressonância Magnética , Oomicetos/genética , Oxirredução , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Oxirredutases/ultraestrutura , Filogenia , Análise de Sequência de DNA , Especificidade por Substrato
19.
Genetics ; 218(2)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33848333

RESUMO

Despite the fundamental importance of mutation rate as a driving force in evolution and disease risk, common methods to assay mutation rate are time-consuming and tedious. Established methods such as fluctuation tests and mutation accumulation experiments are low-throughput and often require significant optimization to ensure accuracy. We established a new method to determine the mutation rate of many strains simultaneously by tracking mutation events in a chemostat continuous culture device and applying deep sequencing to link mutations to alleles of a DNA-repair gene. We applied this method to assay the mutation rate of hundreds of Saccharomyces cerevisiae strains carrying mutations in the gene encoding Msh2, a DNA repair enzyme in the mismatch repair pathway. Loss-of-function mutations in MSH2 are associated with hereditary nonpolyposis colorectal cancer, an inherited disorder that increases risk for many different cancers. However, the vast majority of MSH2 variants found in human populations have insufficient evidence to be classified as either pathogenic or benign. We first benchmarked our method against Luria-Delbrück fluctuation tests using a collection of published MSH2 missense variants. Our pooled screen successfully identified previously characterized nonfunctional alleles as high mutators. We then created an additional 185 human missense variants in the yeast ortholog, including both characterized and uncharacterized alleles curated from ClinVar and other clinical testing data. In a set of alleles of known pathogenicity, our assay recapitulated ClinVar's classification; we then estimated pathogenicity for 157 variants classified as uncertain or conflicting reports of significance. This method is capable of studying the mutation rate of many microbial species and can be applied to problems ranging from the generation of high-fidelity polymerases to measuring the frequency of antibiotic resistance emergence.


Assuntos
Análise Mutacional de DNA/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteína 2 Homóloga a MutS/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Resistência Microbiana a Medicamentos/genética , Biblioteca Gênica , Humanos , Taxa de Mutação , Mutação de Sentido Incorreto
20.
PLoS One ; 16(1): e0246049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497418

RESUMO

Historic wooden structures in Polar Regions are being adversely affected by decay fungi and a warming climate will likely accelerate degradation. Fort Conger and the Peary Huts at Lady Franklin Bay in northern Ellesmere Island are important international heritage sites associated with early exploration in the High Arctic. Fort Conger, built by Adolphus Greely and expedition members during the First International Polar Year in 1881, was dismantled and used by Robert Peary and his expedition crew in the early 1900's to build several smaller shelters. These historic structures remain at the site but are deteriorating. This investigation examines the fungi associated with wood decay in the historic woods. Soft rot was observed in all 125 wood samples obtained from the site. The major taxa found associated with the decayed wood were Coniochaeta (18%), Phoma (13%) Cadophora (12%), Graphium (9%), and Penicillium (9%) as well as many other Ascomycota that are known to cause soft rot in wood. Micromorphological observations using scanning electron microscopy of historic wooden timbers that were in ground contact revealed advanced stages of type I soft rot. No wood destroying Basidiomycota were found. Identification of the fungi associated with decay in these historic woods is a first step to better understand the unusual decomposition processes underway in this extreme environment and will aid future research to help control decay and preserve this important cultural heritage.


Assuntos
DNA Fúngico/isolamento & purificação , Fungos/isolamento & purificação , Madeira/microbiologia , Regiões Árticas , Expedições , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...